## **Review of Estimation: Key Terms**

- 1. Estimating the Mean of the Distribution: Y has unknown mean ,  $\mu$  , and unknown variance,  $\sigma^2$
- 2. **Random Sampling:** Sample n times...

**ex ante**: 
$$\{Y_i\} \sim Y \ iid \ , i = 1, ..., n ; ex post:  $\{y_i\}$$$

- 3. **Estimators as Rules:** Estimators are random variables; the rule will generate different estimates depending on the particular sample
- 4. (Point) Estimators v. estimates:

**Estimator** - 
$$M(Y_1,...,Y_n) = \beta_0 + \beta_1 Y_1 + ... + \beta_n Y_n$$
 vs.

**Estimate** - 
$$M(y_1,...,y_n) = \hat{m} = \beta_0 + \beta_1 y_1 + ... + \beta_n y_n$$
 for the given sample

- 5. **Unbiased Estimator**:  $E(M(Y_1,...,Y_n)) = \mu$  ... on average, the rule gets it right
- 6. **Linear Unbiased Estimator (LUE)**: For estimating the mean of Y...

$$M = \beta_1 Y_1 + \beta_2 Y_2 + ... + \beta_n Y_n$$
, where  $\sum_{i=1}^n \beta_i = 1$ , so that  $E(M) = \mu$ .

7. Best Linear Unbiased Estimator (BLUE):

min 
$$Var(M) = \sigma^2 \sum \beta_i^2$$
 s.t.  $\sum_{i=1}^n \beta_i = 1$ .

8. The Sample Mean is BLUE. (Does not depend on the distribution of Y.)

9. Sample Statistics as Estimators: Actual estimates will depend on the actual sample.

a. Sample Mean (BLUE): 
$$\overline{Y} = \frac{1}{n} \sum Y_i$$
, unbiased since  $E(\overline{Y}) = \mu$ 

b. *Variance* (unbiased): 
$$S^2 = S_Y^2 = S_{YY} = \frac{1}{n-1} \sum (Y_i - \overline{Y})^2$$
, unbiased since  $E(S_Y^2) = Var(Y) = \sigma^2$ 

c. **Standard Deviation** (generally biased): 
$$S_Y = \sqrt{S_{YY}}$$

d. **Covariance** (unbiased): 
$$S_{XY} = \frac{1}{n-1} \sum_{i} (X_i - \overline{X})(Y_i - \overline{Y}),$$

$$E(S_{XY}) = Cov(X, Y) = \sigma_{XY}$$

e. *Correlation* (generally biased): 
$$\rho_{XY} = \frac{S_{XY}}{S_X S_Y}$$

- 10. **Efficiency (of say, UEs):** Smaller variance, for any possible (true and unknown) parameter value
- 11. Interval Estimator v. estimates: Confidence Intervals are Interval Estimators;

$$[L(Y_1,...,Y_n),U(Y_1,...,Y_n)] \text{ vs. } [L(y_1,...,y_n),U(y_1,...,y_n)]$$